TERRAMETRA

NCEES FS Practice Exam

Terrametra Resources

Lynn Patten

Practice Exam

\checkmark 1. One corner of a $60-\mathrm{ft} . \times 120$-ft. lot, otherwise rectangular, is a curve with a radius of 20 ft . and a central angle of 90°.
\checkmark The area (ft. ${ }^{2}$) of the lot is most nearly:
A. 6,872
B. 6,886
C. 7,114
D. 7,200

Practice Exam

$$
120
$$

$$
\begin{array}{r}
60 \times 120=7200 \\
-20 \times 20=400 \\
\hline 6800 \\
+\frac{\pi(20)^{2}}{4}=314 \\
\hline 7114
\end{array}
$$

Practice Exam

\checkmark 1. One corner of a $60-\mathrm{ft} . \times 120$-ft. lot, otherwise rectangular, is a curve with a radius of 20 ft . and a central angle of 90°.
\checkmark The area (ft. ${ }^{2}$) of the lot is most nearly:
A. 6,872
B. 6,886
C. 7,114
D. 7,200

Practice Exam

\checkmark 1. One corner of a $60-\mathrm{ft} . \times 120$-ft. lot, otherwise rectangular, is a curve with a radius of 20 ft . and a central angle of 90°.
\checkmark The area (ft. ${ }^{2}$) of the lot is most nearly:
A. 6,872
B. 6,886
C. 7,114
D. 7,200

Practice Exam

\checkmark 2. A client wants to create a 1-acre parcel by establishing a North-South line, $B C$, as shown in the figure.
\checkmark The length (ft.) of Side AB is most nearly:
A. 299.96
B. 352.84
C. 358.73
D. $\quad 366.20$

Practice Exam

$$
\begin{gathered}
\text { Area }=\frac{c^{2} \sin A \sin B}{2 \sin C} \\
\begin{array}{c}
43560=\frac{c^{2} \sin 50 \sin 55}{2 \sin 75} \\
c^{2}=\frac{2(43560) \sin 75}{\sin 50 \sin 55} \\
=134,104.44 \\
c=366.20
\end{array}
\end{gathered}
$$

Practice Exam

\checkmark 2. A client wants to create a 1-acre parcel by establishing a North-South line, $B C$, as shown in the figure.
\checkmark The length (ft.) of Side AB is most nearly:
A. 299.96
B. 352.84
C. 358.73
D. $\quad 366.20$

Practice Exam

\checkmark 2. A client wants to create a 1-acre parcel by establishing a North-South line, $B C$, as shown in the figure.
\checkmark The length (ft.) of Side AB is most nearly:
A. 299.96
B. 352.84
C. 358.73
D. $\quad 366.20$

Practice Exam

\checkmark 3. The center of a circle with a radius of 4 is at $\mathrm{x}=5, \mathrm{y}=-2$.
\checkmark The equation of the circle is:
A. $(x-5)^{2}+(y-2)^{2}-4=0$
B. $(x+5)^{2}+(y+2)^{2}-4=0$
C. $(x-5)^{2}+(y+2)^{2}-16=0$
D. $(x-5)^{2}+(y+2)^{2}+16=0$

Practice Exam

$$
\begin{gathered}
\Delta x^{2}+\Delta y^{2}=r^{2} \\
(x-(5))^{2}+(y-(-2))^{2}=4^{2} \\
(x-5)^{2}+(y+2)^{2}-16=0
\end{gathered}
$$

Practice Exam

\checkmark 3. The center of a circle with a radius of 4 is at $\mathrm{x}=5, \mathrm{y}=-2$.
\checkmark The equation of the circle is:
A. $(x-5)^{2}+(y-2)^{2}-4=0$
B. $(x+5)^{2}+(y+2)^{2}-4=0$
C. $(x-5)^{2}+(y+2)^{2}-16=0$
D. $(x-5)^{2}+(y+2)^{2}+16=0$

Practice Exam

\checkmark 3. The center of a circle with a radius of 4 is at $\mathrm{x}=5, \mathrm{y}=-2$.
\checkmark The equation of the circle is:
A. $(x-5)^{2}+(y-2)^{2}-4=0$
B. $(x+5)^{2}+(y+2)^{2}-4=0$
C. $(x-5)^{2}+(y+2)^{2}-16=0$
D. $(x-5)^{2}+(y+2)^{2}+16=0$

Practice Exam

\checkmark 4. A thin-walled tank is constructed as a body of revolution of a parabola, as shown in the figure. The base diameter is 20 ft ., and the height of the tank is 25 ft .
\checkmark The volume (ft. ${ }^{3}$) of water in the tank when full is most nearly:
A. $\frac{500}{3} \pi$
B. $\frac{625}{2} \pi$
C. $\frac{625}{2}(9-4 \sqrt{2}) \pi$
D. $\frac{6875}{6} \pi$

Practice Exam

$$
\begin{aligned}
& \pi \int_{a}^{b} R^{2} d h=\pi \int_{0}^{25}(10-\sqrt{y})^{2} d y=\pi \int_{0}^{25}(100-20 \sqrt{y}+y) d y \\
& =\pi \int_{0}^{25} 100 d y-20 \pi \int_{0}^{25} y^{\frac{1}{2}} d y+\pi \int_{0}^{25} y d y \\
& =\left.100 \pi y\right|_{0} ^{25}-\left.20 \pi \frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right|_{0} ^{25}+\left.\pi \frac{y^{2}}{2}\right|_{0} ^{25} \\
& =2500 \pi-\frac{40}{3} \pi(125)+\frac{\pi}{2}(625)=\frac{15,000}{6} \pi-\frac{10,000}{6} \pi+\frac{1875}{6} \pi \\
& =\frac{6875}{6} \pi
\end{aligned}
$$

Practice Exam

\checkmark 4. A thin-walled tank is constructed as a body of revolution of a parabola, as shown in the figure. The base diameter is 20 ft ., and the height of the tank is 25 ft .
\checkmark The volume (ft. ${ }^{3}$) of water in the tank when full is most nearly:
A. $\frac{500}{3} \pi$
B. $\frac{625}{2} \pi$
C. $\frac{625}{2}(9-4 \sqrt{2}) \pi$
D. $\frac{6875}{6} \pi$

Practice Exam

\checkmark 4. A thin-walled tank is constructed as a body of revolution of a parabola, as shown in the figure. The base diameter is 20 ft ., and the height of the tank is 25 ft .
\checkmark The volume (ft. ${ }^{3}$) of water in the tank when full is most nearly:
A. $\frac{500}{3} \pi$
B. $\frac{625}{2} \pi$
C. $\frac{625}{2}(9-4 \sqrt{2}) \pi$
D. $\frac{6875}{6} \pi$

Practice Exam

\checkmark 5. Which object described below will subtend the greatest angle at your eye?
A. A tree 18 feet tall at 100 yards away
B. A house 12 feet tall at 180 feet away
C. A $1 / 2$-inch-diameter coin at 10 inches away
D. The 2,170 -mile-diameter moon at 240,000 miles away

Practice Exam

$$
\begin{gathered}
\frac{18}{100(3)}=\frac{18}{300}=0.0600 \\
\frac{12}{180}=0.0667 \\
\frac{0.5}{10}=\frac{1}{20}=0.0500 \\
\frac{2,170}{240,000}=0.0090
\end{gathered}
$$

Practice Exam

\checkmark 5. Which object described below will subtend the greatest angle at your eye?
A. A tree 18 feet tall at 100 yards away
B. A house 12 feet tall at 180 feet away
C. A $1 / 2$-inch-diameter coin at 10 inches away
D. The 2,170 -mile-diameter moon at 240,000 miles away

Practice Exam

\checkmark 5. Which object described below will subtend the greatest angle at your eye?
A. A tree 18 feet tall at 100 yards away
B. A house 12 feet tall at 180 feet away
C. A $1 / 2$-inch-diameter coin at 10 inches away
D. The 2,170 -mile-diameter moon at 240,000 miles away

Practice Exam

\checkmark 6. An island is formed by the intersections of Birch, Oak, and Ash Streets. Specific details of the intersection are shown in the figure below.
\checkmark The length (ft.) of the right-of-way line along the Birch Street side of the island is most nearly:
A. 46.95
B. 47.35
C. 47.70
D. 47.90

Practice Exam

$$
\begin{gathered}
180^{\circ}-136^{\circ} 24^{\prime}=43^{\circ} 36^{\prime} \\
\frac{43^{\circ} 36^{\prime}}{2}=21^{\circ} 48^{\prime} \\
\tan 21^{\circ} 48^{\prime}=\frac{25}{x} \\
x=62.50 \\
137.59-25.00-62.50 \\
=50.09 \\
\tan 43^{\circ} 36^{\prime}=\frac{y}{50.09} \\
y=47.70
\end{gathered}
$$

Practice Exam

\checkmark 6. An island is formed by the intersections of Birch, Oak, and Ash Streets. Specific details of the intersection are shown in the figure below.
\checkmark The length (ft.) of the right-of-way line along the Birch Street side of the island is most nearly:
A. 46.95
B. 47.35
C. 47.70
D. 47.90

Practice Exam

\checkmark 6. An island is formed by the intersections of Birch, Oak, and Ash Streets. Specific details of the intersection are shown in the figure below.
\checkmark The length (ft.) of the right-of-way line along the Birch Street side of the island is most nearly:
A. 46.95
B. 47.35
C. 47.70
D. 47.90

Practice Exam

\checkmark 7. A thermometer, which is also known to read $3^{\circ} \mathrm{F}$ too high, records a temperature of $46^{\circ} \mathrm{F}$.
\checkmark The correct temperature is most nearly:
A. $\quad 6.1^{\circ} \mathrm{C}$
B. $7.8^{\circ} \mathrm{C}$
C. $9.4^{\circ} \mathrm{C}$
D. $25.2^{\circ} \mathrm{C}$

Practice Exam

$$
\begin{gathered}
C=\frac{5}{9}(F-32) \\
C=\frac{5}{9}(43-32)=\frac{5}{9}(11)=\frac{55}{9}=6.1^{\circ} \mathrm{C}
\end{gathered}
$$

Practice Exam

\checkmark 7. A thermometer, which is also known to read $3^{\circ} \mathrm{F}$ too high, records a temperature of $46^{\circ} \mathrm{F}$.
\checkmark The correct temperature is most nearly:
A. $\quad 6.1^{\circ} \mathrm{C}$
B. $7.8^{\circ} \mathrm{C}$
C. $9.4^{\circ} \mathrm{C}$
D. $25.2^{\circ} \mathrm{C}$

Practice Exam

\checkmark 7. A thermometer, which is also known to read $3^{\circ} \mathrm{F}$ too high, records a temperature of $46^{\circ} \mathrm{F}$.
\checkmark The correct temperature is most nearly:
A. $\quad 6.1^{\circ} \mathrm{C}$
B. $7.8^{\circ} \mathrm{C}$
C. $9.4^{\circ} \mathrm{C}$
D. $25.2^{\circ} \mathrm{C}$

Practice Exam

\checkmark 8. Two brass monuments set on a shady sidewalk have a known, verified horizontal separation of 99.96 ft . A surveyor measures between the monuments with a tape and reads 99.99 ft . at a temperature of $83^{\circ} \mathrm{F}$, holding a tension of 15 lb . while the tape is fully supported.
\checkmark The length (ft.) of the surveyor's tape between the 0 and 100 marks while the temperature remains at $83^{\circ} \mathrm{F}$ is most nearly:
A. 99.95
B. 99.97
C. $\quad 100.03$
D. The question cannot be answered with the information given.

Practice Exam

99.96^{\prime} true
99.99^{\prime} measured
x^{\prime} true
100.00^{\prime} measured

$$
\begin{gathered}
\frac{99.96}{99.99}=\frac{x}{100.00} \\
x=99.97
\end{gathered}
$$

Practice Exam

\checkmark 8. Two brass monuments set on a shady sidewalk have a known, verified horizontal separation of 99.96 ft . A surveyor measures between the monuments with a tape and reads 99.99 ft . at a temperature of $83^{\circ} \mathrm{F}$, holding a tension of 15 lb . while the tape is fully supported.
\checkmark The length (ft.) of the surveyor's tape between the 0 and 100 marks while the temperature remains at $83^{\circ} \mathrm{F}$ is most nearly:
A. 99.95
B. 99.97
C. $\quad 100.03$
D. The question cannot be answered with the information given.

Practice Exam

\checkmark 8. Two brass monuments set on a shady sidewalk have a known, verified horizontal separation of 99.96 ft . A surveyor measures between the monuments with a tape and reads 99.99 ft . at a temperature of $83^{\circ} \mathrm{F}$, holding a tension of 15 lb . while the tape is fully supported.
\checkmark The length (ft.) of the surveyor's tape between the 0 and 100 marks while the temperature remains at $83^{\circ} \mathrm{F}$ is most nearly:
A. 99.95
B. 99.97
C. $\quad 100.03$
D. The question cannot be answered with the information given.

Practice Exam

\checkmark 9. Direct and reverse zenith angles to a point are read as follows:

$$
\begin{aligned}
& \mathrm{D}=36^{\circ} 12^{\prime} 18^{\prime \prime} \\
& \mathrm{R}=323^{\circ} 47^{\prime} 36^{\prime \prime}
\end{aligned}
$$

\checkmark The vertical circle reading that must be set in the instrument to produce a vertical angle of $12^{\circ} 16^{\prime} 12^{\prime \prime}$ is most nearly:
A. $77^{\circ} 43^{\prime} 45^{\prime \prime}$
B. $77^{\circ} 43^{\prime} 48^{\prime \prime}$
C. $\quad 77^{\circ} 43^{\prime} 51^{\prime \prime}$
D. $77^{\circ} 43^{\prime} 54^{\prime \prime}$

Practice Exam

raw zenith angles	adjusted zenith angles	true vertical $12-16-12$
$36-12-18$	$36-12-21$	true zenith
$+323-47-36$		
$359-59-54$	$\frac{+323-47-39}{359-59-60}$	$77-43-48$
$6 "$ short	check	actual zenith $77-43-45$

Practice Exam

\checkmark 9. Direct and reverse zenith angles to a point are read as follows:

$$
\begin{aligned}
& \mathrm{D}=36^{\circ} 12^{\prime} 18^{\prime \prime} \\
& \mathrm{R}=323^{\circ} 47^{\prime} 36^{\prime \prime}
\end{aligned}
$$

\checkmark The vertical circle reading that must be set in the instrument to produce a vertical angle of $12^{\circ} 16^{\prime} 12^{\prime \prime}$ is most nearly:
A. $77^{\circ} 43^{\prime} 45^{\prime \prime}$
B. $77^{\circ} 43^{\prime} 48^{\prime \prime}$
C. $\quad 77^{\circ} 43^{\prime} 51^{\prime \prime}$
D. $77^{\circ} 43^{\prime} 54^{\prime \prime}$

Practice Exam

\checkmark 9. Direct and reverse zenith angles to a point are read as follows:

$$
\begin{aligned}
& D=36^{\circ} 12^{\prime} 18^{\prime \prime} \\
& R=323^{\circ} 47^{\prime} 36^{\prime \prime}
\end{aligned}
$$

\checkmark The vertical circle reading that must be set in the instrument to produce a vertical angle of $12^{\circ} 16^{\prime} 12^{\prime \prime}$ is most nearly:
A. $77^{\circ} 43^{\prime} 45^{\prime \prime}$
B. $77^{\circ} 43^{\prime} 48^{\prime \prime}$
C. $77^{\circ} 43^{\prime} 51^{\prime \prime}$
D. $77^{\circ} 43^{\prime} 54^{\prime \prime}$

Practice Exam

\checkmark 10. The elevation of BM A is 644.00 ft . A level in perfect adjustment is set midway between BM A and BM B. The backsight reading is 8.76 ft . and the foresight reading is 3.21 ft .
\checkmark If the level rod at BM B is held at an angle of 10° to the vertical, then the correct elevation (ft.) of BM B is:
A. 638.40
B. 649.50
C. 649.55
D. 649.60

Practice Exam

Practice Exam

\checkmark 10. The elevation of BM A is 644.00 ft . A level in perfect adjustment is set midway between BM A and BM B. The backsight reading is 8.76 ft . and the foresight reading is 3.21 ft .
\checkmark If the level rod at BM B is held at an angle of 10° to the vertical, then the correct elevation (ft.) of BM B is:
A. 638.40
B. 649.50
C. 649.55
D. 649.60

Practice Exam

\checkmark 10. The elevation of BM A is 644.00 ft . A level in perfect adjustment is set midway between BM A and BM B. The backsight reading is 8.76 ft . and the foresight reading is 3.21 ft .
\checkmark If the level rod at BM B is held at an angle of 10° to the vertical, then the correct elevation (ft.) of BM B is:
A. 638.40
B. 649.50
C. 649.55
D. 649.60

Practice Exam

\checkmark 11. Consider the following

$$
\begin{aligned}
A & =B^{*} C+D / C^{\wedge} 2 \\
\text { Where: } \quad B & =2 \quad C=0.5 \quad D=127
\end{aligned}
$$

The following notation applies to this question:

$$
\text { * = multiply } \quad I=\text { divide } \quad \wedge=\text { raise to exponent }
$$

\checkmark If the question were executed by a spreadsheet or computer, the value of A would be most nearly:
A. 509
B. 512
C. 130,050
D. 299,081

Practice Exam

$$
\begin{aligned}
A & =B * C+D / C^{\wedge} 2 \\
& =(2) \cdot(0.5)+127 /(0.5)^{2} \\
& =1+\frac{127}{0.25}=1+127(4) \\
& =1+508=509
\end{aligned}
$$

Practice Exam

\checkmark 11. Consider the following

$$
\begin{aligned}
A & =B^{*} C+D / C^{\wedge} 2 \\
\text { Where: } \quad B & =2 \quad C=0.5 \quad D=127
\end{aligned}
$$

The following notation applies to this question:

$$
\text { * = multiply } \quad I=\text { divide } \quad \wedge=\text { raise to exponent }
$$

\checkmark If the question were executed by a spreadsheet or computer, the value of A would be most nearly:
A. 509
B. 512
C. 130,050
D. 299,081

Practice Exam

\checkmark 11. Consider the following

$$
\begin{aligned}
A & =B^{*} C+D / C^{\wedge} 2 \\
\text { Where: } \quad B & =2 \quad C=0.5 \quad D=127
\end{aligned}
$$

The following notation applies to this question:

$$
\text { * = multiply } \quad I=\text { divide } \quad \wedge=\text { raise to exponent }
$$

\checkmark If the question were executed by a spreadsheet or computer, the value of A would be most nearly:

A. 509

B. 512
C. 130,050
D. 299,081

Practice Exam

\checkmark 12. A survey party has set offset stakes for construction of an 8 -in. sewer shown in the design plan. When the existing 12 -in. sewer line is uncovered for the construction of Maintenance Hole (MH) 1, it is found that the actual flow line elevation is $1,228.69 \mathrm{ft}$. rather than the design elevation of $1,228.47 \mathrm{ft}$. The gradient must be revised, holding the flow line elevation of $1,229.27 \mathrm{ft}$. at MH 2. If the elevation of the grade stake is $1,235.06 \mathrm{ft}$., the cut (ft .) to the flow line that you would mark on the stake at Station $1+25$ is most nearly:
A. 5.98
B. 6.08
C. 6.18
D. 6.25

Practice Exam

Practice Exam

\checkmark 12. A survey party has set offset stakes for construction of an 8 -in. sewer shown in the design plan. When the existing 12 -in. sewer line is uncovered for the construction of Maintenance Hole (MH) 1, it is found that the actual flow line elevation is $1,228.69 \mathrm{ft}$. rather than the design elevation of $1,228.47 \mathrm{ft}$. The gradient must be revised, holding the flow line elevation of $1,229.27 \mathrm{ft}$. at MH 2. If the elevation of the grade stake is $1,235.06 \mathrm{ft}$., the cut (ft .) to the flow line that you would mark on the stake at Station $1+25$ is most nearly:
A. 5.98
B. 6.08
C. 6.18
D. 6.25

Practice Exam

\checkmark 12. A survey party has set offset stakes for construction of an 8 -in. sewer shown in the design plan. When the existing 12 -in. sewer line is uncovered for the construction of Maintenance Hole (MH) 1, it is found that the actual flow line elevation is $1,228.69 \mathrm{ft}$. rather than the design elevation of $1,228.47 \mathrm{ft}$. The gradient must be revised, holding the flow line elevation of $1,229.27 \mathrm{ft}$. at MH 2. If the elevation of the grade stake is $1,235.06 \mathrm{ft}$., the cut (ft .) to the flow line that you would mark on the stake at Station $1+25$ is most nearly:
A. 5.98
B. 6.08
C. 6.18
D. 6.25

Practice Exam

\checkmark 13. A traverse was run from Point A to Point E, and the coordinates of each point were computed with the following results:

Point	X Coordinate	Y Coordinate
A	100.00	100.00
B	250.55	232.66
C	388.26	95.98
D	466.15	2.15
E	609.50	-11.92

\checkmark The distance and bearing, respectively, of a straight line from Point A to Point E are most nearly:
A. $\quad 517.06 \mathrm{ft}$., $\mathrm{S} 09^{\circ} 54^{\prime} \mathrm{E}$
B. $517.06 \mathrm{ft}, \mathrm{S} 80^{\circ} 06^{\prime} \mathrm{E}$
C. 521.65 ft ., $\mathrm{S} 12^{\circ} 23^{\prime} \mathrm{E}$
D. 521.65 ft ., $\mathrm{S} 77^{\circ} 37^{\prime} \mathrm{E}$

Practice Exam

Distance $=\sqrt{(509.50)^{2}+(111.92)^{2}}=521.65$

Practice Exam

\checkmark 13. A traverse was run from Point A to Point E, and the coordinates of each point were computed with the following results:

Point	X Coordinate	Y Coordinate
A	100.00	100.00
B	250.55	232.66
C	388.26	95.98
D	466.15	2.15
E	609.50	-11.92

\checkmark The distance and bearing, respectively, of a straight line from Point A to Point E are most nearly:
A. $\quad 517.06 \mathrm{ft}$., $\mathrm{S} 09^{\circ} 54^{\prime} \mathrm{E}$
B. $517.06 \mathrm{ft}, \mathrm{S} 80^{\circ} 06^{\prime} \mathrm{E}$
C. 521.65 ft ., $\mathrm{S} 12^{\circ} 23^{\prime} \mathrm{E}$
D. 521.65 ft ., $\mathrm{S} 77^{\circ} 37^{\prime} \mathrm{E}$

Practice Exam

\checkmark 13. A traverse was run from Point A to Point E, and the coordinates of each point were computed with the following results:

Point	X Coordinate	Y Coordinate
A	100.00	100.00
B	250.55	232.66
C	388.26	95.98
D	466.15	2.15
E	609.50	-11.92

\checkmark The distance and bearing, respectively, of a straight line from Point A to Point E are most nearly:
A. $\quad 517.06 \mathrm{ft}$., $\mathrm{S} 09^{\circ} 54^{\prime} \mathrm{E}$
B. $517.06 \mathrm{ft}, \mathrm{S} 80^{\circ} 06^{\prime} \mathrm{E}$
C. 521.65 ft ., $\mathrm{S} 12^{\circ} 23^{\prime} \mathrm{E}$
D. $521.65 \mathrm{ft}, \mathrm{S} 77^{\circ} 37^{\prime} \mathrm{E}$

Practice Exam

\checkmark 14. The coordinates of Point Q on a highway spiral relative to the TS are:

$$
X=200, \quad Y=5 .
$$

\checkmark The defiection angle from the TS to Point Q is most nearly:
A. $0^{\circ} 28^{\prime} 38^{\prime \prime}$
B. $1^{\circ} 25^{\prime} 55^{\prime \prime}$
C. $2^{\circ} 50^{\prime} 00^{\prime \prime}$
D. $4^{\circ} 05^{\prime} 02^{\prime \prime}$

Practice Exam

$$
\text { Deflection }=\operatorname{atan}\left(\frac{5.00}{200.00}\right)=01-25-56
$$

Practice Exam

\checkmark 14. The coordinates of Point Q on a highway spiral relative to the TS are:

$$
X=200, Y=5 .
$$

\checkmark The defiection angle from the TS to Point Q is most nearly:
A. $0^{\circ} 28^{\prime} 38^{\prime \prime}$
B. $1^{\circ} 25^{\prime} 55^{\prime \prime}$
C. $2^{\circ} 50^{\prime} 00^{\prime \prime}$
D. $4^{\circ} 05^{\prime} 02^{\prime \prime}$

Practice Exam

\checkmark 14. The coordinates of Point Q on a highway spiral relative to the TS are:

$$
X=200, Y=5 .
$$

\checkmark The defiection angle from the TS to Point Q is most nearly:
A. $0^{\circ} 28^{\prime} 38^{\prime \prime}$
B. $1^{\circ} 25^{\prime} 55^{\prime \prime}$
C. $2^{\circ} 50^{\prime} 00^{\prime \prime}$
D. $4^{\circ} 05^{\prime} 02^{\prime \prime}$

Practice Exam

\checkmark 15. The following deflection angles were measured in a closed traverse:
P: $\quad 92^{\circ} 24^{\prime} \mathrm{R}$
Q: $150^{\circ} 42^{\prime} \mathrm{R}$
R: $\quad 15^{\circ} 37^{\prime} \mathrm{L}$
S: $132^{\circ} 35^{\prime} \mathrm{R}$
\checkmark The balanced deflection angle at R is most nearly:
A. $\quad 15^{\circ} 36^{\prime} \mathrm{L}$
B. $15^{\circ} 37^{\prime} \mathrm{L}$
C. $15^{\circ} 38^{\prime} \mathrm{L}$
D. $15^{\circ} 39^{\prime} \mathrm{L}$

Practice Exam

Practice Exam

\checkmark 15. The following deflection angles were measured in a closed traverse:
P: $\quad 92^{\circ} 24^{\prime} \mathrm{R}$
Q: $150^{\circ} 42^{\prime} \mathrm{R}$
R: $\quad 15^{\circ} 37^{\prime} \mathrm{L}$
S: $132^{\circ} 35^{\prime} \mathrm{R}$
\checkmark The balanced deflection angle at R is most nearly:
A. $\quad 15^{\circ} 36^{\prime} \mathrm{L}$
B. $15^{\circ} 37^{\prime} \mathrm{L}$
C. $15^{\circ} 38^{\prime} \mathrm{L}$
D. $15^{\circ} 39^{\prime} \mathrm{L}$

Practice Exam

\checkmark 15. The following deflection angles were measured in a closed traverse:
P: $\quad 92^{\circ} 24^{\prime} \mathrm{R}$
Q: $150^{\circ} 42^{\prime} \mathrm{R}$
R: $\quad 15^{\circ} 37^{\prime} \mathrm{L}$
S: $132^{\circ} 35^{\prime} \mathrm{R}$
\checkmark The balanced deflection angle at R is most nearly:
A. $15^{\circ} 36^{\prime} \mathrm{L}$
B. $15^{\circ} 37^{\prime} \mathrm{L}$
C. $15^{\circ} 38^{\prime} \mathrm{L}$
D. $15^{\circ} 39^{\prime} \mathrm{L}$

Practice Exam

\checkmark 16. A clear zone avigation easement with a $34: 1$ slope begins at ground level 200 ft . from the end of an active airport runway. The natural ground slope moving away from a point 200 ft . from the end of the runway is 0.5% in an uphill direction.
\checkmark At what distance (ft.) from the end of the runway can a 35 -ft-tall structure be located and not violate the clear zone easement?
A. 1,434
B. 1,593
C. 1,634
D. 1,675

Practice Exam

$\underbrace{\frac{1}{34} x-35=\frac{0.5}{100} x}_{200.00} 35$

Practice Exam

\checkmark 16. A clear zone avigation easement with a $34: 1$ slope begins at ground level 200 ft . from the end of an active airport runway. The natural ground slope moving away from a point 200 ft . from the end of the runway is 0.5% in an uphill direction.
\checkmark At what distance (ft.) from the end of the runway can a 35 -ft-tall structure be located and not violate the clear zone easement?
A. 1,434
B. 1,593
C. 1,634
D. 1,675

Practice Exam

\checkmark 16. A clear zone avigation easement with a $34: 1$ slope begins at ground level 200 ft . from the end of an active airport runway. The natural ground slope moving away from a point 200 ft . from the end of the runway is 0.5% in an uphill direction.
\checkmark At what distance (ft.) from the end of the runway can a 35-ft-tall structure be located and not violate the clear zone easement?
A. 1,434
B. 1,593
C. 1,634
D. 1,675

Practice Exam

\checkmark 17. The sum of the exterior angles of an eight-sided figure is most nearly:
A. $1,800^{\circ}$
B. $1,440^{\circ}$
C. $1,080^{\circ}$
D. none of the above

Practice Exam

$$
\begin{aligned}
& \text { exterior angles } \\
& =180(n+2) \\
& =180(8+2) \\
& =180(10) \\
& =1800^{\circ}
\end{aligned}
$$

Practice Exam

\checkmark 17. The sum of the exterior angles of an eight-sided figure is most nearly:
A. $1,800^{\circ}$
B. $1,440^{\circ}$
C. $1,080^{\circ}$
D. none of the above

Practice Exam

\checkmark 17. The sum of the exterior angles of an eight-sided figure is most nearly:
A. $1,800^{\circ}$
B. $1,440^{\circ}$
C. $1,080^{\circ}$
D. none of the above

Practice Exam

\checkmark 18. You are to set slope stakes along the roads within a subdivision. At Station $2+00$ the finish grade elevation is 110.31 at the edge of the road, and the distance from the centerline to the edge of the road is 12.0 ft . The rod is being held at a distance of 28.5 ft . from the centerline and the rod reading is 12.1 ft . while the H.I. is 119.77 ft . Typical cut and fill sections are shown below.
\checkmark Your next step would be to:
A. move in about 6 ft . and try again
B. move in about 10 ft . and try again
C. move out about 6 ft . and try again

D. drive in a stake since you are at the slope stake

Practice Exam

Practice Exam

\checkmark 18. You are to set slope stakes along the roads within a subdivision. At Station $2+00$ the finish grade elevation is 110.31 at the edge of the road, and the distance from the centerline to the edge of the road is 12.0 ft . The rod is being held at a distance of 28.5 ft . from the centerline and the rod reading is 12.1 ft . while the H.I. is 119.77 ft . Typical cut and fill sections are shown below.
\checkmark Your next step would be to:
A. move in about 6 ft . and try again
B. move in about 10 ft . and try again
C. move out about 6 ft . and try again

D. drive in a stake since you are at the slope stake

Practice Exam

\checkmark 18. You are to set slope stakes along the roads within a subdivision. At Station $2+00$ the finish grade elevation is 110.31 at the edge of the road, and the distance from the centerline to the edge of the road is 12.0 ft . The rod is being held at a distance of 28.5 ft . from the centerline and the rod reading is 12.1 ft . while the H.I. is 119.77 ft . Typical cut and fill sections are shown below.
\checkmark Your next step would be to:
A. move in about 6 ft . and try again
B. move in about 10 ft . and try again
C. move out about 6 ft . and try again

D. drive in a stake since you are at the slope stake

Practice Exam

\checkmark 19. A small rectangular lot measures $120.00 \pm 0.04 \mathrm{ft}$. by $144.00 \pm 0.05 \mathrm{ft}$.
\checkmark The area ($\mathrm{ft.}^{2}$) of the lot is best stated as:
A. $17,280 \pm 4.7$
B. $17,280 \pm 8.3$
C. $17,280 \pm 49.7$
D. $17,280 \pm 87$

Practice Exam

$144.00 \cdot 0.04$

$$
120.00 \cdot 0.05
$$

$144 \cdot 120=17,280$

$$
\sqrt{(144 \cdot 0.04)^{2}+(120 \cdot 0.05)^{2}}=8.3
$$

$17,280 \pm 8.3$

Practice Exam

\checkmark 19. A small rectangular lot measures $120.00 \pm 0.04 \mathrm{ft}$. by $144.00 \pm 0.05 \mathrm{ft}$.
\checkmark The area ($\mathrm{ft.}^{2}$) of the lot is best stated as:
A. $17,280 \pm 4.7$
B. $17,280 \pm 8.3$
C. $17,280 \pm 49.7$
D. $17,280 \pm 87$

Practice Exam

\checkmark 19. A small rectangular lot measures $120.00 \pm 0.04 \mathrm{ft}$. by $144.00 \pm 0.05 \mathrm{ft}$.
\checkmark The area ($\mathrm{ft.}^{2}$) of the lot is best stated as:
A. $17,280 \pm 4.7$
B. $17,280 \pm 8.3$
C. $17,280 \pm 49.7$
D. $17,280 \pm 87$

Practice Exam

\checkmark 20. After leveling up a hill where backsight distances were taken at 200 ft . and foresight distances at 150 ft . you discovered that the line of sight was inclined upward at 0.012 ft . per 100 -ft. sight distance. The difference in elevation between the starting BM A and ending BM B was +50.035 ft . There were 20 instrument setups.
\checkmark The adjusted elevation difference (ft.) after correcting for line of sight inclination is most nearly:
A. 49.915
B. 50.023
C. 50.029
D. 50.155

Practice Exam

Practice Exam

\checkmark 20. After leveling up a hill where backsight distances were taken at 200 ft . and foresight distances at 150 ft . you discovered that the line of sight was inclined upward at 0.012 ft . per 100 -ft. sight distance. The difference in elevation between the starting BM A and ending BM B was +50.035 ft . There were 20 instrument setups.
\checkmark The adjusted elevation difference (ft.) after correcting for line of sight inclination is most nearly:
A. 49.915
B. 50.023
C. 50.029
D. 50.155

Practice Exam

v 20. After leveling up a hill where backsight distances were taken at 200 ft . and foresight distances at 150 ft . you discovered that the line of sight was inclined upward at 0.012 ft . per 100-ft. sight distance. The difference in elevation between the starting BM A and ending BM B was +50.035 ft . There were 20 instrument setups.
\checkmark The adjusted elevation difference (ft.) after correcting for line of sight inclination is most nearly:
A. 49.915
B. 50.023
C. 50.029
D. 50.155

Practice Exam

\checkmark 21. An angle is measured with a 1 " theodolite twelve times with the following results:

$223^{\circ} 14^{\prime} 56^{\prime \prime}$	$223^{\circ} 14^{\prime} 53^{\prime \prime}$	$223^{\circ} 14^{\prime} 58^{\prime \prime}$
$223^{\circ} 14^{\prime} 52^{\prime \prime}$	$223^{\circ} 14^{\prime} 55^{\prime \prime}$	$223^{\circ} 14^{\prime} 59^{\prime \prime}$
$223^{\circ} 14^{\prime} 58^{\prime \prime}$	$223^{\circ} 15^{\prime} 02^{\prime \prime}$	$223^{\circ} 14^{\prime} 55^{\prime \prime}$
$223^{\circ} 14^{\prime} 59^{\prime \prime}$	$223^{\circ} 15^{\prime} 00^{\prime \prime}$	$223^{\circ} 14^{\prime} 54^{\prime \prime}$

\checkmark The standard deviation of the mean is most nearly:
A. $\pm 0.9^{\prime \prime}$
B. $\pm 1.5^{\prime \prime}$
C. $\pm 2.8^{\prime \prime}$
D. $\pm 3.3^{\prime \prime}$

Practice Exam

Average $=223-14-56.75$

$$
\begin{array}{rrrr}
+0.75 & +3.75 & -1.25 & \sum v^{2}=102.25 \\
+4.75 & +1.75 & -2.25 & \sigma=2.9190 \\
-1.25 & -5.25 & +1.75 & \\
-2.25 & -3.25 & +2.75 &
\end{array}
$$

Standard deviation of the mean:

Population over 10 :

$$
\frac{\sigma}{\sqrt{11}}=0.88
$$

Practice Exam

\checkmark 21. An angle is measured with a 1 " theodolite twelve times with the following results:

$223^{\circ} 14^{\prime} 56^{\prime \prime}$	$223^{\circ} 14^{\prime} 53^{\prime \prime}$	$223^{\circ} 14^{\prime} 58^{\prime \prime}$
$223^{\circ} 14^{\prime} 52^{\prime \prime}$	$223^{\circ} 14^{\prime} 55^{\prime \prime}$	$223^{\circ} 14^{\prime} 59^{\prime \prime}$
$223^{\circ} 14^{\prime} 58^{\prime \prime}$	$223^{\circ} 15^{\prime} 02^{\prime \prime}$	$223^{\circ} 14^{\prime} 55^{\prime \prime}$
$223^{\circ} 14^{\prime} 59^{\prime \prime}$	$223^{\circ} 15^{\prime} 00^{\prime \prime}$	$223^{\circ} 14^{\prime} 54^{\prime \prime}$

\checkmark The standard deviation of the mean is most nearly:
A. $\pm 0.9^{\prime \prime}$
B. $\pm 1.5^{\prime \prime}$
C. $\pm 2.8^{\prime \prime}$
D. $\pm 3.3^{\prime \prime}$

Practice Exam

\checkmark 21. An angle is measured with a 1 " theodolite twelve times with the following results:

$223^{\circ} 14^{\prime} 56^{\prime \prime}$	$223^{\circ} 14^{\prime} 53^{\prime \prime}$	$223^{\circ} 14^{\prime} 58^{\prime \prime}$
$223^{\circ} 14^{\prime} 52^{\prime \prime}$	$223^{\circ} 14^{\prime} 55^{\prime \prime}$	$223^{\circ} 14^{\prime} 59^{\prime \prime}$
$223^{\circ} 14^{\prime} 58^{\prime \prime}$	$223^{\circ} 15^{\prime} 02^{\prime \prime}$	$223^{\circ} 14^{\prime} 55^{\prime \prime}$
$223^{\circ} 14^{\prime} 59^{\prime \prime}$	$223^{\circ} 15^{\prime} 00^{\prime \prime}$	$223^{\circ} 14^{\prime} 54^{\prime \prime}$

\checkmark The standard deviation of the mean is most nearly:
A. $\pm 0.9^{\prime \prime}$
B. $\pm 1.5^{\prime \prime}$
C. $\pm 2.8^{\prime \prime}$
D. $\pm 3.3^{\prime \prime}$

Practice Exam

\checkmark 22. An EDM distance of 1 mile is measured at an elevation of 1 mile.
The earth's radius R is assumed to be $20,906,000 \mathrm{ft}$.
\checkmark The sea level distance (ft.) is most nearly:
A. $5,270.02$
B. $5,278.67$
C. $5,280.00$
D. $5,281.33$

Practice Exam

Practice Exam

\checkmark 22. An EDM distance of 1 mile is measured at an elevation of 1 mile.
The earth's radius R is assumed to be $20,906,000 \mathrm{ft}$.
\checkmark The sea level distance (ft.) is most nearly:
A. $5,270.02$
B. $5,278.67$
C. $5,280.00$
D. $5,281.33$

Practice Exam

\checkmark 22. An EDM distance of 1 mile is measured at an elevation of 1 mile.
The earth's radius R is assumed to be $20,906,000 \mathrm{ft}$.
\checkmark The sea level distance (ft.) is most nearly:
A. $5,270.02$
B. $5,278.67$
C. $5,280.00$
D. $5,281.33$

Practice Exam

\checkmark 23. The original government record of a fractional lot in the northwest quarter of Section 5 shows the following dimensions in chains:

north side	19.83
east side	19.09
west side	19.31
south side	20.14

\checkmark The area (acres) of the lot on the original township plat would be most nearly:
A. 38.33
B. 38.35
C. 38.37
D. 38.39

Practice Exam

$$
\begin{gathered}
19.985 \cdot 19.200 \\
=383.712 \text { sq.chains } \\
=38.37 \text { acres }
\end{gathered}
$$

Practice Exam

\checkmark 23. The original government record of a fractional lot in the northwest quarter of Section 5 shows the following dimensions in chains:

north side	19.83
east side	19.09
west side	19.31
south side	20.14

\checkmark The area (acres) of the lot on the original township plat would be most nearly:
A. 38.33
B. 38.35
C. 38.37
D. 38.39

Practice Exam

\checkmark 23. The original government record of a fractional lot in the northwest quarter of Section 5 shows the following dimensions in chains:

north side	19.83
east side	19.09
west side	19.31
south side	20.14

\checkmark The area (acres) of the lot on the original township plat would be most nearly:
A. 38.33
B. 38.35
C. 38.37
D. 38.39

Practice Exam

\checkmark 24. Section 18 of T21N, R6W, was subdivided for the first time about 20 years ago. You wish to retrace that survey. The official distance shown in government notes for the north line of Section 18 is 78.39 chains.
\checkmark The measurement (chains) that should have been used for the north line of the NW $1 / 4$ of the NW $1 / 4$ (also called Lot 1) is most nearly:
A. 18.39
B. 19.20
C. 19.60
D. 38.39

Practice Exam

Practice Exam

\checkmark 24. Section 18 of T21N, R6W, was subdivided for the first time about 20 years ago. You wish to retrace that survey. The official distance shown in government notes for the north line of Section 18 is 78.39 chains.
\checkmark The measurement (chains) that should have been used for the north line of the NW $1 / 4$ of the NW $1 / 4$ (also called Lot 1) is most nearly:
A. 18.39
B. 19.20
C. 19.60
D. 38.39

Practice Exam

\checkmark 24. Section 18 of T21N, R6W, was subdivided for the first time about 20 years ago. You wish to retrace that survey. The official distance shown in government notes for the north line of Section 18 is 78.39 chains.
\checkmark The measurement (chains) that should have been used for the north line of the NW $1 / 4$ of the NW $1 / 4$ (also called Lot 1) is most nearly:

B. 19.20
C. 19.60
D. 38.39

Practice Exam

\checkmark 25. The distance on a vertical aerial photograph between two east-west hedge lines is measured and found to be 7.96 in. The hedge lines are approximately the north and south section lines of Section 16, which is regular. The terrain is approximately level.
\checkmark What is the approximate photo scale in the area between the two hedges?
A. 1:663
B. 1:24,000
C. 1 in . $=663 \mathrm{ft}$.
D. $1 \mathrm{in} .=7,960 \mathrm{ft}$.

Practice Exam

hedge line	
h.96"	
Section 16	

$$
\begin{aligned}
\frac{5,280}{7.96} & =663 \frac{\mathrm{ft}}{\mathrm{in}} \\
1 \mathrm{in} . & =663 \mathrm{ft}
\end{aligned}
$$

Practice Exam

\checkmark 25. The distance on a vertical aerial photograph between two east-west hedge lines is measured and found to be 7.96 in. The hedge lines are approximately the north and south section lines of Section 16, which is regular. The terrain is approximately level.
\checkmark What is the approximate photo scale in the area between the two hedges?
A. 1:663
B. 1:24,000
C. 1 in . $=663 \mathrm{ft}$.
D. $1 \mathrm{in} .=7,960 \mathrm{ft}$.

Practice Exam

\checkmark 25. The distance on a vertical aerial photograph between two east-west hedge lines is measured and found to be 7.96 in. The hedge lines are approximately the north and south section lines of Section 16, which is regular. The terrain is approximately level.
\checkmark What is the approximate photo scale in the area between the two hedges?
A. 1:663
B. 1:24,000
C. 1 in . $=663 \mathrm{ft}$.
D. $1 \mathrm{in} .=7,960 \mathrm{ft}$.

Practice Exam

\checkmark 26. You plan to plot the following traverse on a sheet with dimensions of 18 in. wide $\times 24$ in. long.
$\mathrm{AB}: \quad \mathrm{S} 0^{\circ} 25^{\prime} \mathrm{E}, \quad 1,380.02 \mathrm{ft}$.
BC: $\quad \mathrm{N} 88^{\circ} 31^{\circ} \mathrm{W}$, $\quad 2,495.00 \mathrm{ft}$.
CD: $\quad \mathrm{N} 0^{\circ} 25^{\prime} \mathrm{W}, \quad 1,380.02 \mathrm{ft}$.
DA: \quad S $88^{\circ} 31^{\prime} E, \quad 2,495.00 \mathrm{ft}$.
\checkmark The scale best suited to show maximum detail and to allow for a 1/2-in. margin is:
A. $1: 1,440$
B. $1: 1,200$
C. $1: 960$
D. 1:600

Practice Exam

Practice Exam

\checkmark 26. You plan to plot the following traverse on a sheet with dimensions of 18 in. wide $\times 24$ in. long.
$\mathrm{AB}: \quad \mathrm{S} 0^{\circ} 25^{\prime} \mathrm{E}, \quad 1,380.02 \mathrm{ft}$.
BC: $\quad \mathrm{N} 88^{\circ} 31^{\circ} \mathrm{W}$, $\quad 2,495.00 \mathrm{ft}$.
CD: $\quad \mathrm{N} 0^{\circ} 25^{\prime} \mathrm{W}, \quad 1,380.02 \mathrm{ft}$.
DA: $\quad \mathrm{S} 88^{\circ} 31^{\prime} \mathrm{E}, \quad 2,495.00 \mathrm{ft}$.
\checkmark The scale best suited to show maximum detail and to allow for a $1 / 2$-in. margin is:
A. 1:1,440
B. $1: 1,200$
C. $1: 960$
D. 1:600

Practice Exam

\checkmark 26. You plan to plot the following traverse on a sheet with dimensions of 18 in. wide $\times 24$ in. long.
$\mathrm{AB}: \quad \mathrm{S} 0^{\circ} 25^{\prime} \mathrm{E}, \quad 1,380.02 \mathrm{ft}$.
BC: $\quad \mathrm{N} 88^{\circ} 31^{\circ} \mathrm{W}$, $\quad 2,495.00 \mathrm{ft}$.
CD: $\quad \mathrm{N} 0^{\circ} 25^{\prime} \mathrm{W}$, $\quad 1,380.02 \mathrm{ft}$.
DA: \quad S $88^{\circ} 31^{\prime} E, \quad 2,495.00 \mathrm{ft}$.
\checkmark The scale best suited to show maximum detail and to allow for a $1 / 2$-in. margin is:
A. $1: 1,440$
B. $1: 1,200$
C. $1: 960$
D. 1:600

Practice Exam

\checkmark 27. The area of a lake is obtained by planimeter as 10 in. ${ }^{2}$ on a map at scale 1:50,000.
\checkmark The area (sq. mi.) covered by the lake is most nearly:
A. 6.23
B. 7.89
C. 9.47
D. 10.00

Practice Exam

$$
\begin{gathered}
1: 50,000 \\
1 \mathrm{in} .=4,166.67 \mathrm{ft} \\
1 \mathrm{in} . \\
1 \text { sq.in. }=0.79 \mathrm{mi} \\
10 \text { sq.in. }=623 \mathrm{sq} . \mathrm{mi} \\
\text {. } \\
\text { sq. } \mathrm{mi} .
\end{gathered}
$$

Practice Exam

\checkmark 27. The area of a lake is obtained by planimeter as 10 in. ${ }^{2}$ on a map at scale 1:50,000.
\checkmark The area (sq. mi.) covered by the lake is most nearly:
A. 6.23
B. 7.89
C. 9.47
D. 10.00

Practice Exam

\checkmark 27. The area of a lake is obtained by planimeter as 10 in. ${ }^{2}$ on a map at scale 1:50,000.
\checkmark The area (sq. mi.) covered by the lake is most nearly:
A. 6.23
B. 7.89
C. 9.47
D. 10.00

Practice Exam

\checkmark 28. On an aerial photograph, the measured distance between two points is 5.134 in. On a 7.5 -min topographic map ($1: 24,000$ scale), the measured distance between these same two points is 1.689 in.
\checkmark The nominal scale ratio of the photo is most nearly:
A. 1:658
B. $1: 7,896$
C. $1: 7,920$
D. 1:24,000

Practice Exam

$$
\begin{gathered}
1: 24,000 \\
1.689 \cdot 24,000=40,536 \\
\frac{40,536}{5.134}=7,896 \\
1: 7,896
\end{gathered}
$$

Practice Exam

\checkmark 28. On an aerial photograph, the measured distance between two points is 5.134 in. On a 7.5 -min topographic map ($1: 24,000$ scale), the measured distance between these same two points is 1.689 in.
\checkmark The nominal scale ratio of the photo is most nearly:
A. 1:658
B. $1: 7,896$
C. $1: 7,920$
D. 1:24,000

Practice Exam

\checkmark 28. On an aerial photograph, the measured distance between two points is 5.134 in. On a 7.5 -min topographic map ($1: 24,000$ scale), the measured distance between these same two points is 1.689 in.
\checkmark The nominal scale ratio of the photo is most nearly:
A. 1:658
B. $1: 7,896$
C. $1: 7,920$
D. 1:24,000

